Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(10): 5212-5221, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38433387

RESUMO

To investigate the alterations of yolk protein during embryonic development in Wanxi white goose, the egg yolk protein composition at days 0, 4, 7, 14, 18, and 25 of incubation (D0, D4, D7, D14, D18, and D25) was analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. A total of 65 spots representing 11 proteins with significant abundance changes were detected. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin mainly participated in nutrient (lipid, riboflavin, and iron ion) transport, and vitellogenin-2-like showed a lower abundance after D14. Ovomucoid-like were involved in endopeptidase inhibitory activity and immunoglobulin binding and exhibited a higher expression after D18, suggesting a potential role in promoting the absorption of immunoglobulin and providing passive immune protection for goose embryos after D18. Furthermore, myosin-9 and actin (ACTB) were involved in the tight junction pathway, potentially contributing to barrier integrity. Serum albumin mainly participated in cytolysis and toxic substance binding. Therefore, the high expression of serum albumin, myosin-9, and ACTB throughout the incubation might protect the developing embryo. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin might play a crucial role in providing nutrition for embryonic development, and VTG-2-like was preferentially degraded/absorbed.


Assuntos
Gansos , Vitelogeninas , Animais , Vitelogeninas/análise , Gansos/metabolismo , Apolipoproteína B-100/análise , Apolipoproteína B-100/metabolismo , Proteômica , Transferrina , Proteínas do Ovo/química , Desenvolvimento Embrionário , Albumina Sérica/metabolismo , Imunoglobulinas/análise , Miosinas/análise , Miosinas/metabolismo , Gema de Ovo/química
3.
Poult Sci ; 102(10): 102937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37494810

RESUMO

The granulosa cells play an important role in the fate of follicular development or atresia in poultry. Fibroblast growth factor 12 (FGF12) is downregulated in atretic follicles and may be involved in regulating granulosa cell survival in previous studies, but its molecular mechanism remains unclear. In this study, FGF12 overexpression and knockdown models of goose granulosa cells were constructed to investigate its function. The downstream expression of the cell cycle pathway was analyzed by qPCR. Granulosa cell proliferative activity and apoptosis were detected by CCK8 and TUNEL. Protein phosphorylation levels of ERK and AKT were measured using Western blotting to analyze the key pathway of FGF12 regulation of granulosa cell proliferation. ERK protein phosphorylation inhibitor was added for further verification. After overexpression of FGF12, cell proliferation activity was increased, the expressions of cell cycle pathway genes CCND1, CCNA2, MAD2, and CHK1 were upregulated, the apoptosis of granulosa cell was decreased, and Caspase 3 gene and protein expression were downregulated. After the knockdown of FGF12, cell proliferation activity decreased, the expression of downstream genes in the cell cycle pathway was downregulated, the apoptosis of granulosa cells was increased, and the Bcl-2 gene and protein were downregulated. Overexpression of FGF12 promoted the synthesis of P4 and upregulates the expression of the STAR gene. Overexpression of FGF12 promoted ERK protein phosphorylation but did not affect AKT phosphorylation. The addition of ERK phosphorylation inhibitors resulted in the elimination of the increase in cell proliferative activity caused by FGF12 overexpression. In conclusion, FGF12 could promote proliferation and inhibit apoptosis of goose granulosa cells by increasing ERK phosphorylation.


Assuntos
Gansos , Genes cdc , Feminino , Animais , Gansos/genética , Gansos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosforilação , Galinhas/genética , Células da Granulosa , Apoptose/genética , Proliferação de Células , Atresia Folicular
4.
Poult Sci ; 102(10): 102915, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478622

RESUMO

Dietary metabolizable energy (ME) level could offer a well production performance through maintaining lipid homeostasis in poultry. In this study, a total of 540 geese (450 females and 90 males) at 64 wk of age with similar body weight (4,600 ± 382) were randomly divided into 5 groups with 3 replicates in each group and 30 females and 6 males (1♂:5♀) in each replicate. After 2 wk adaptation, the 5 groups were designed to provide diet with ME intakes of 9.65, 10.05, 10.70, 11.45, and 11.75 MJ/kg, respectively, according to production requirement. Body weight, egg production, hatchability, blood lipid, and fat deposition were recorded after 6 wk feeding. The expression of lipid synthesis-related genes, lipoprotein lipase (LPL) and fatty acid synthase (FASN), were determined by quantitative real-time PCR. Geese fed with high ME diet of 11.75 MJ/kg caused an increased liver and abdominal fat weight and low hatchability of set eggs. The ovarian weight and oviduct length were higher in geese fed dietary energy of 10.7 MJ/kg as compared to the 9.65 MJ/kg groups, whereas no significant difference was observed in geese fed dietary energy of 10.05 MJ/kg. Dietary energy level did not change the concentration of serum lipids at the late egg laying stage. The LPL expression exhibited linear and quadratic effect in response to dietary ME. The FASN expression showed quadratic effect and a relatively higher expression was exhibited in 10.05 and 11.45 MJ/kg than that of the 9.65 and 10.70 MJ/kg ME groups. According to the productivity, reproductive performance, and fat deposition, dietary ME of 10.13 to 10.28 MJ/kg could be suggested for breeding geese at their late laying stage.


Assuntos
Galinhas , Gansos , Feminino , Masculino , Animais , Gansos/fisiologia , Galinhas/fisiologia , Óvulo , Dieta/veterinária , Lipídeos , Peso Corporal , Ração Animal/análise
5.
Anim Biosci ; 36(10): 1558-1567, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37170525

RESUMO

OBJECTIVE: Dietary green cabbage was evaluated for its impact on fatty acid synthetic ability in different adipose tissues during fattening of Wanxi White geese. METHODS: A total of 256 Wanxi White geese at their 70 days were randomly allocated into 4 groups with 4 replicates and fed 0%, 15%, 30%, and 45% fresh green cabbage (relative to dry matter), respectively, in each group. Adipose tissues (subcutaneous and abdominal fat), liver and blood were collected from 4 birds in each replicate at their 70, 80, 90, and 100 days for fatty acid composition, relative gene expression and serum lipid analysis. Two-way or three-way analysis of variance was used for analysis. RESULTS: The contents of palmitic acid (C16:0), palmitoleic acid (C16:1), linoleic acid (C18:2), and alpha-linolenic acid (C18:3) were feeding time dependently increased. The C16:0 and stearic acid (C18:0) were higher in abdominal fat, while C16:1, oleic acid (C18:1), and C18:2 were higher in subcutaneous fat. Geese fed 45% green cabbage exhibited highest level of C18:3. Geese fed green cabbage for 30 d exhibited higher level of C16:0 and C18:0 in abdominal fat, while geese fed 30% to 45% green cabbage exhibited higher C18:3 in subcutaneous fat. The expression of Acsl1 (p = 0.003) and Scd1 (p<0.0001) were decreased with green cabbage addition. Interaction between feeding time and adipose tissue affected elongation of long-chain fatty acids family member 6 (Elovl6), acyl-CoA synthetase longchain family member 1 (Acsl1), and stearoly-coA desaturase 1 (Scd1) gene expression levels (p = 0.013, p = 0.003, p = 0.005). Feeding time only affected serum lipid levels of free fatty acid and chylomicron. Higher contents of C16:0, C18:1, and C18:3 were associated with greater mRNA expression of Scd1 (p<0.0001), while higher level of C18:2 was associated with less mRNA expression of Scd1 (p<0.0001). CONCLUSION: Considering content of C18:2 and C18:3, 30% addition of green cabbage could be considered for fattening for 30 days in Wanxi White geese.

6.
J Transl Med ; 21(1): 226, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978132

RESUMO

BACKGROUND: Substantial evidence suggests that immunoproteasome is implicated in the various neurological diseases such as stroke, multiple sclerosis and neurodegenerative diseases. However, whether the immunoproteasome itself deficiency causes brain disease is still unclear. Therefore, the aim of this study was to explore the contribution of the immunoproteasome subunit low molecular weight protein 2 (LMP2) in neurobehavioral functions. METHODS: Male LMP2 gene completed knockout (LMP2-KO) and littermate wild type (WT) Sprague-Dawley (SD) rats aged 12-month-old were used for neurobehavioral testing and detection of proteins expression by western blotting and immunofluorescence. A battery of neurobehavioral test tools including Morris water maze (MWM), open field maze, elevated plus maze were used to evaluate the neurobehavioral changes in rats. Evans blue (EB) assay, Luxol fast blue (LFB) and Dihydroethidium (DHE) staining were applied to explore the blood-brain barrier (BBB) integrity, brain myelin damage and brain intracellular reactive oxygen species (ROS) levels, respectively. RESULTS: We firstly found that LMP2 gene deletion did not cause significantly difference in rats' daily feeding activity, growth and development as well as blood routine, but it led to metabolic abnormalities including higher levels of low-density lipoprotein cholesterol, uric acid and blood glucose in the LMP2-KO rats. Compared with the WT rats, LMP2-KO rats displayed obviously cognitive impairment and decreased exploratory activities, increased anxiety-like behavior and without strong effects on gross locomotor abilities. Furthermore, multiple myelin loss, increased BBB leakage, downregulation of tight junction proteins ZO-1, claudin-5 and occluding, and enhanced amyloid-ß protein deposition were observed in brain regions of LMP2-KO rats. In addition, LMP2 deficiency significantly enhanced oxidative stress with elevated levels of ROS, caused the reactivation of astrocytes and microglials and markedly upregulated protein expression levels of interleukin (IL)-1 receptor-associated kinase 1 (IRAK1), IL-6 and tumor necrosis factor-α (TNF-α) compared to the WT rats, respectively. CONCLUSION: These findings highlight LMP2 gene global deletion causes significant neurobehavioral dysfunctions. All these factors including metabolic abnormalities, multiple myelin loss, elevated levels of ROS, increased BBB leakage and enhanced amyloid-ß protein deposition maybe work together and eventually led to chronic oxidative stress and neuroinflammation response in the brain regions of LMP2-KO rats, which contributed to the initial and progress of cognitive impairment.


Assuntos
Doenças Neuroinflamatórias , Acidente Vascular Cerebral , Animais , Masculino , Ratos , Barreira Hematoencefálica/patologia , Peso Molecular , Bainha de Mielina , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/metabolismo
7.
Animals (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830395

RESUMO

The mechanism which regulates differential fat deposition in egg yolk from the indigenous breeds and commercial laying hens is still unclear. In this research, Chinese indigenous Huainan Partridge chickens and Nongda III commercial laying hens were used for egg collection and liver sampling. The weight of eggs and yolk were recorded. Yolk fatty acids were determined by gas chromatography-mass spectrometry. Lipid metabolites in the liver were detected by liquid chromatography-mass spectrometry. Yolk weight, yolk ratio and yolk fat ratio exhibited higher in the Huainan Partridge chicken than that of the Nongda III. Compared to the Nongda III, the content of total saturated fatty acid was lower, while the unsaturated fatty acid was higher in the yolk of the Huainan Partridge chicken. Metabolites of phosphatidylinositol and phosphatidylserine from glycerolphospholipids, and metabolites of diacylglycerol from glycerolipids showed higher enrichment in the Huainan Partridge chicken than that of the Nongda III, which promoted the activation of the adipocytokine signaling pathway. However, metabolites of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine from glycerol phospholipids, and metabolites of triacylglycerol from glycerolipids showed lower enrichment in the Huainan Partridge chicken than that of the Nongda III. The high level of yolk fat deposition in the Huainan Partridge chicken is regulated by the activation of the adipocytokine signaling pathway which can promote the accumulation of diacylglycerol and ceramide in the liver.

8.
Animals (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830469

RESUMO

BACKGROUND: The accumulation of fat in ducks is the main cause of low feed efficiency and metabolic diseases in ducks. Retinoic acid X receptor alpha (RXRA) is a member of the nuclear receptor superfamily involved in lipid, glucose, energy, and hormone metabolism. The effect of the RXRA gene on lipid metabolism in duck preadipocytes (DPACs) and the relationship between SNPs and the feed efficiency traits of ducks are unclear. METHODS: qRT-PCR and Western blotting analyses were used to detect changes in mRNA and protein in cells. Intracellular triglycerides (TGs) were detected using an ELISA kit. A general linear model analysis was used to determine the association between RXRA SNPs and feed efficiency. RESULTS: The duck RXRA gene was highly expressed on the fourth day of DPAC differentiation. The RXRA gene increased the content of fat and TG in DPACs and promoted the expression of cell differentiation genes; g.5,952,667 correlated with average daily feed intake (ADFI), residual feed intake (RFI), and feed conversion ratio (FCR). CONCLUSIONS: Duck RXRA can accelerate fat accumulation, and the polymorphism of the RXRA gene is closely related to feed efficiency, which provides basic data for breeding high feed efficiency ducks.

9.
Front Vet Sci ; 10: 1107798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761883

RESUMO

This study investigated the effects of Clostridium butyricum on the growth performance, meat quality and intestinal health of broilers. A total of 800 one-day-old male Arbor Acres broilers were randomly assigned to two groups with 16 replicates of 25 broilers per group and fed with a basal diet (CON) or a basal diet supplemented with 1.5 × 109 cfu/kg C. butyricum and 5 × 108 cfu/kg C. butyricum at 1-21 d and 22-42 d, respectively (CB). The results indicated that C. butyricum significantly increased the final body weight, average daily gain at 1-42 d in the growth performance of broilers (P < 0.05). Moreover, C. butyricum significantly increased a 24 h * value and pH24h value of breast meat but reduced the drip loss and shear force (P < 0.05). Regarding serum antioxidant indices, C. butyricum significantly increased the total superoxide dismutase (T-SOD) and total antioxidative capacity activities and reduced the malondialdehyde content (P < 0.05). Furthermore, the broilers in the CB demonstrated an increase in jejunal lipase and trypsin activities, villus height (VH) and VH-to-crypt depth ratio at 42 d compared with those in the CON (P < 0.05). C. butyricum also upregulated the intestinal mRNA levels of zonula occludens-1, nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and interleukin-10 in the jejunal mucosa (P < 0.05), but it downregulated the mRNA levels of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (P < 0.05). These results indicate that C. butyricum can improve the growth performance and meat quality of broilers. In particular, C. butyricum can improve the intestinal health of broilers, which is likely to be related to the activation of the Nrf2 signaling pathway and inhibition of the NF-κB signaling pathway.

10.
BMC Genomics ; 24(1): 24, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647001

RESUMO

BACKGROUND: Geese exhibit relatively low reproductive performance, and follicular atresia is an important factor that restricts the egg production of geese. Systematic analysis of the regulation of follicle atresia in geese through transcriptome and proteome levels could provide meaningful information on clarifying the mechanism of follicle atresia in poultry. RESULT: The granulosa cell layer was loose, disintegrated and showed apoptosis in atretic follicles and remained intact in normal follicles. The hormone levels of FSH and LH were significantly decreased in the atresia follicles compared to the normal follicles (P < 0.05). A total of 954 differentially expressed genes (DEGs, 315 increased and 639 decreased) and 161 differentially expressed proteins (DEPs, 61 increased and 100 decreased) were obtained in atresia follicles compared to normal follicles, of which, 15 genes were differentially expressed in both transcriptome and proteome. The DEGs were mainly enriched in sodium transmembrane transport, plasma membrane, and transmembrane transporter activity based on the GO enrichment analysis and in the cell cycle pathway based on the KEGG enrichment analysis. The DEPs were mainly enriched in localization, lysosome, and phospholipid-binding based on the GO enrichment analysis. Candidate genes Smad2/3, Smad4, Annexin A1 (ANXA1), Stromelysin-1 (MMP3), Serine/threonine-protein kinase (CHK1), DNA replication licensing factor (MCM3), Cyclin-A2 (CCNA2), mitotic spindle assembly checkpoint protein (MAD2), Cyclin-dependent kinase 1 (CDK1), fibroblast growth factor 12 (FGF12), and G1/S-specific cyclin-D1 (CCND1) were possibly responsible for the regulation of atresia. CONCLUSION: The cell cycle is an important pathway for the regulation of follicular atresia. Sodium outflow and high expression of MMP3 and MMP9 could be responsible for structural destruction and apoptosis of follicular cells.


Assuntos
Atresia Folicular , Gansos , Metaloproteinase 3 da Matriz , Animais , Feminino , Apoptose/genética , Ciclo Celular/genética , Ciclinas/genética , Ciclinas/metabolismo , Atresia Folicular/genética , Gansos/genética , Células da Granulosa/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Proteoma/metabolismo , Transcriptoma
11.
Poult Sci ; 102(3): 102451, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634463

RESUMO

The development of follicles in the ovaries is a critical determinant of poultry egg production. There are existing studies on the follicular development patterns in poultry, but the specific regulatory mechanisms still need further study. In a previous study, we identified long non-coding RNA (lncRNA) MSTRG.5970.28, anosmin 1 (ANOS1), and its predicted target miR-133a-3p that may be associated with goose ovary development. However, the function of MSTRG.5970.28 in goose granulosa cells and its regulatory mechanisms affecting granulosa cell proliferation and apoptosis have not been reported. In the present study, MSTRG.5970.28 and miR-133a-3p overexpression and interference vectors were constructed. Combined with reverse-transcription real-time quantitative PCR (RT-qPCR), a dual luciferase activity assay, Cell Counting Kit-8 (CCK-8), and flow cytometric analysis, we investigated the role of the MSTRG.5970.28-miR-133a-3p-ANOS1 axis in goose follicular granulosa cells and the associated regulatory mechanisms. MSTRG.5970.28 was found to be localized in the cytoplasm and its expression was influenced by reproductive hormones. The targeting relationship among MSTRG.5970.28, ANOS1, and miR-133a-3p were verified by a dual luciferase activity assay. CCK-8 and apoptosis assays showed that MSTRG.5970.28 inhibited the proliferation and promoted apoptosis of goose granulosa cells. The regulatory role of miR-133a-3p on granulosa cell proliferation and apoptosis was opposite to MSTRG.5970.28. We found that the proliferative and apoptotic effects of granulosa cells caused by MSTRG.5970.28 overexpression were attenuated by miR-133a-3p. MSTRG.5970.28 functions as a competitive endogenous RNA that regulates ANOS1 expression by sponging miR-133a-3p and thus exerts regulatory functions in granulosa cells. In sum, the present study identified lncRNA MSTRG.5970.28 as associated with goose ovary development, which affects the expression of ANOS1 by targeting miR-133a-3p, thereby influencing the proliferation and apoptosis of goose granulosa cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Gansos/genética , Gansos/metabolismo , Galinhas/genética , Óvulo/metabolismo , Apoptose/genética , Células da Granulosa/metabolismo , Proliferação de Células/genética , Luciferases/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674699

RESUMO

Retinoid X receptor alpha (RXRA) is a well-characterized factor that regulates lipid metabolism; however, the regulatory mechanism in muscle cells of poultry is still unknown. The overexpression and the knockdown of RXRA in myoblasts (CS2 cells), RT-PCR, and western blotting were used to detect the expression levels of genes and proteins related to PPAR-signaling pathways. Intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified free fatty acids (NEFAs) were detected by the Elisa kit. Fat droplets were stained with Oil Red O. The double-fluorescein reporter gene and chromatin immunoprecipitation (CHIP) were used to verify the relationship between RXRA and candidate target genes. The RXRA gene was highly expressed in duck breast muscle, and its mRNA and its protein were reduced during the differentiation of CS2 cells. The CS2 cells, with the overexpression of RXRA, showed reduced content in TGs, CHOL, NEFAs, and lipid droplets and upregulated the mRNA expression of CD36, ACSL1, and PPARG genes and the protein expression of CD36 and PPARG. The knockdown of RXRA expression in CS2 cells enhanced the content of TGs, CHOL, NEFAs, and lipid droplets and downregulated the mRNA and protein expression of CD36, ACLS1, ELOVL6, and PPARG. The overexpression of the RXRA gene, the activity of the double-luciferase reporter gene of the wild-type CD36 promoter was higher than that of the mutant type. RXRA bound to -860/-852 nt, -688/-680 nt, and -165/-157 nt at the promoter region of CD36. Moreover, the overexpression of CD36 in CS2 cells could suppress the content of TGs, CHOL, NEFAs, and lipid droplets, while the knockdown expression of CD36 increased the content of TGs, CHOL, NEFAs, and lipid droplets. In this study, the transcription factor, RXRA, inhibited the accumulation of TGs, CHOL, NEFAs, and fat droplets in CS2 cells by promoting CD36 expression.


Assuntos
Patos , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Patos/genética , Receptor X Retinoide alfa/metabolismo , PPAR gama/metabolismo , Ácidos Graxos não Esterificados , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismo , Colesterol , Mioblastos/metabolismo , RNA Mensageiro/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo
13.
Poult Sci ; 102(1): 102282, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435162

RESUMO

Granular cells proliferation in goose regulated by bone morphogenetic proteins (BMPs) signaling pathway is still unknown. In this experiment, BMPs and their receptor, and receptor activated mothers against decapentaplegic homologs (SMADs) were quantitatively expressed in granular cell layer of pre-hierarchycal and hierarchycal follicles in Wanxi White goose. The screened BMP was then used for construction of overexpressed and knockdown vectors and transfected into granular cells of goose to assess the cell proliferation and apoptosis. Granular cells with BMP-overexpressed were then used for ChIP-Seq analysis to elucidate the molecular mechanism of BMP affecting granular cell proliferation. The results showed that the mRNA expression of BMP4 was significantly expressed in pre-hierarchical follicles, and also highly expressed in hierarchical follicles than other BMPs, while the Ⅰ and Ⅱ type of BMP receptors were expressed in basic level. The mRNA expression of SMAD8 was significantly elevated in pre-hierarchical follicles. Overexpression of BMP4 could promote the proliferation of granular cells and inhibited the expression of BMP4 caused a higher cell apoptosis. ChIP-Seq identified multiple regulatory targets of SMAD4, which were mostly related to cell cycle and lipid metabolism according to the GO and KEGG pathway enrichment. From the five most significant binding motif and quantitative expression verification, the activin membrane binding inhibitor (BAMBI) was down regulated in BMP4 overexpressed granular cells. In conclusion, the BMP4 was highly expressed in granular cells and phosphorylates SMAD8, the activated SMAD8 combined with SMAD4 transfers into nucleus to regulate the expression of BAMBI to promote lipid synthesis.


Assuntos
Galinhas , Gansos , Animais , Gansos/genética , Gansos/metabolismo , Galinhas/genética , Proteínas Morfogenéticas Ósseas/genética , Transdução de Sinais/fisiologia , Proliferação de Células , RNA Mensageiro/metabolismo
14.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557946

RESUMO

This study was designed to isolate an anti-inflammatory activity oligopeptide from goose blood (GBP) for ameliorating LPS-mediated inflammation response and oxidative stress in RAW264.7 macrophages. In this study, GBP was isolated by tangential flow ultrafiltration system (TFUS) combined with size exclusion chromatography (SEC), ion exchange chromatography (IEC), and reversed-phase liquid chromatography (RP-LC), and then identified by liquid chromatography mass spectrometry (LC-MS/MS). The experiment results indicated that the amino acid sequence of oligopeptide with the best anti-inflammatory activity was IIe-Val-Tyr-Pro-Trp-Thr-Gln-Arg (IVYPWTQR), which had a molecular weight of 1062.5720 Da, and was derived from haemoglobin subunit beta OS in goose blood. In addition, IVYPWTQR was confirmed to have satisfactory stability and maintained high anti-inflammatory activity in a simulated gastrointestinal digestion. The mechanism by which the IVYPWTQR protected against LPS-mediated inflammation response was attributed to downregulating the TLR4/NF-kB/iNOS pathway. Moreover, IVYPWTQR ameliorated oxidative stress damage in inflammatory state was attributed to activating antioxidant defence system, which was regulated by Keap-1/NRF2/HO-1 signalling pathway for decreasing the accumulation of reactive oxide species (ROS). In summary, these results indicated GBP could serve as a potential functional factor for prevention and improvement of inflammation mediated by LPS and provided an affordable dietary intervention strategy to prevent inflammation.


Assuntos
Gansos , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Gansos/metabolismo , Cromatografia Líquida , Células RAW 264.7 , Espectrometria de Massas em Tandem , Anti-Inflamatórios/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Peptídeos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Mol Psychiatry ; 27(11): 4754-4769, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948662

RESUMO

Vascular cognitive impairment and dementia (VCID) is the second most common form of dementia after Alzheimer's disease (AD). Currently, the mechanistic insights into the evolution and progression of VCID remain elusive. White matter change represents an invariant feature. Compelling clinical neuroimaging and pathological evidence suggest a link between white matter changes and neurodegeneration. Our prior study detected hypoperfused lesions in mice with partial deficiency of endothelial nitric oxide (eNOS) at very young age, precisely matching to those hypoperfused areas identified in preclinical AD patients. White matter tracts are particularly susceptible to the vascular damage induced by chronic hypoperfusion. Using immunohistochemistry, we detected severe demyelination in the middle-aged eNOS-deficient mice. The demyelinated areas were confined to cortical and subcortical areas including the corpus callosum and hippocampus. The intensity of demyelination correlated with behavioral deficits of gait and associative recognition memory performances. By Evans blue angiography, we detected blood-brain barrier (BBB) leakage as another early pathological change affecting frontal and parietal cortex in eNOS-deficient mice. Sodium nitrate fortified drinking water provided to young and middle-aged eNOS-deficient mice completely prevented non-perfusion, BBB leakage, and white matter pathology, indicating that impaired endothelium-derived NO signaling may have caused these pathological events. Furthermore, genome-wide transcriptomic analysis revealed altered gene clusters most related to mitochondrial respiratory pathways selectively in the white matter of young eNOS-deficient mice. Using eNOS-deficient mice, we identified BBB breakdown and hypoperfusion as the two earliest pathological events, resulting from insufficient vascular NO signaling. We speculate that the compromised BBB and mild chronic hypoperfusion trigger vascular damage, along with oxidative stress and astrogliosis, accounting for the white matter pathological changes in the eNOS-deficient mouse model. We conclude that eNOS-deficient mice represent an ideal spontaneous evolving model for studying the earliest events leading to white matter changes, which will be instrumental to future therapeutic testing of drug candidates and for targeting novel/specific vascular mechanisms contributing to VCID and AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Substância Branca , Animais , Camundongos , Substância Branca/patologia , Óxido Nítrico/metabolismo , Circulação Cerebrovascular , Demência Vascular/patologia , Demência Vascular/psicologia , Modelos Animais de Doenças , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/metabolismo
16.
Animals (Basel) ; 12(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892539

RESUMO

Studies have indicated that dietary resveratrol (RES) improves the meat quality of broilers subjected to heat stress (HS), but the mechanism of action remains unclear. Therefore, the main purpose of this study was to investigate the effect of RES on meat quality, muscle antioxidant status, and its mechanism of action in broilers under HS. A total of 162 male AA broilers at 21 days old with similar weight were randomly assigned to 3 treatment groups with 6 replicates each. The control group (ambient temperature: 22 ± 1 °C) and HS group (ambient temperature: 33 ± 1 °C for 10 h a day from 8:00 to 18:00 and 22 ± 1 °C for the remaining time) were fed a basal diet and the HS + RES group was fed a basal diet with 400 mg/kg RES. The feeding was conducted for 21 continuous days. The results indicated that HS decreased final body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), breast and leg muscle yield, a*24h, pH24h, the activities of catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px), and mRNA levels of nuclear factor erythroid 2−related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1), and GSH-Px (p < 0.05). HS also increased b*45min, L*24h, drip loss, malondialdehyde (MDA) content, and kelch-like epichlorohydrin-associated protein 1 (Keap1) mRNA level (p < 0.05). Compared with the HS group, the HS + RES group exhibited a higher ADG, breast and leg muscle yield, a*24h, pH24h, activities of GST and GSH-Px, and mRNA levels of Nrf2, HO-1, and NQO1 but had lower drip loss and Keap1 mRNA level (p < 0.05). RES can improve meat quality and the muscle antioxidant ability of heat-stressed broilers by activating the Nrf2 signaling pathway.

17.
Animals (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35739850

RESUMO

In order to explore the brooding temperature on the absorption of yolk sac and the ovary development of goslings, 126 1-day-old female goslings were randomly divided into three groups with three replicates in each group. The brooding temperatures were set at 32 °C, 29 °C and 26 °C (represent G32, G29 and G26), respectively, in each group. At 48, 60 and 72 h, two goslings from each replicate were weighed, and the yolk sac was collected and weighed. The fatty acid composition of yolk sac fluid was determined by gas chromatography-mass spectrometry (GC-MS). At 1, 2, 3, and 4 weeks of age, goslings from each replicate were weighed, the ovaries were weighed and fixed for hematoxylin-eosin (HE) staining, Cell cycle checkpoint kinase 1 (CHK1), fibroblast growth factor 12 (FGF12) and Sma-and Mad-related protein 4 (SMAD4) which related to regulation of ovarian development were determined by qRT-PCR. The body weight of G29 and G26 was significantly higher than that of G32 at 72 h (p < 0.05). The contents of C14:0, C16:0, C18:2n6c and total fatty acid (ΣTFA) from G32 were significantly higher than that of G26 (p < 0.05), and the contents of C18:1n9t and C22:0 in G29 were significantly higher than that of G26 (p < 0.05). The ovary index, ovary and body weight were significantly higher in G29 than those of G32 and G26 at 2 weeks of age (p < 0.05). The number of primordial follicles, number of primary follicles and diameter of primary follicles were significantly higher in G29 than those in G32 and G26 at 4 weeks of age (p < 0.05). In G29, the expression of CHK1 and SMAD4 was significantly higher than that in G32, and the expression of FGF12 and SMAD4 was significantly higher (p < 0.05) than that in G26 at 2 and 4 weeks of age. In conclusion, brooding temperature at 29 °C could promote the absorption of fatty acids in yolk sac, body weight gain, and ovarian development through up-regulating the expression of CHK1, FGF12 and SMAD4.

18.
Animals (Basel) ; 12(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35405862

RESUMO

Yolk precursor was synthesized under regulation of hormone secretion, while the mechanism of its incorporation into follicle is still unknown. The reproductive hormones, oocyte vitellogenesis receptor (OVR) expression at pre-, early-, peak- and ceased-laying period, and localization of Wanxi White goose were determined in this study. The results showed that the concentration of LH was lowest in serum at peak laying period compared to the other periods (p < 0.01). Moreover, the concentration of E2 was highest (p < 0.01) in serum at early laying period than that of other periods. Moreover, the gene expression level of OVR was highest at ceased laying period compared to other periods (p = 0.014) and was higher in developing follicles than other follicles (p < 0.01). The OVR was distributed in the granular cell layer and decreased with the maturation of follicles. Five transcription factors were predicted in the promoter of OVR, then were screened and verified by overexpression in granulosa cells. C/EBPα and MF3 significantly stimulated the expression of OVR. The combined overexpression of C/EBPα and OVR significantly stimulated the transportation of lipid from culture medium to cytoplasm. In conclusion, C/EBPα is the key transcription factor promoting OVR expression in goose follicle granulosa cells.

19.
Poult Sci ; 101(5): 101804, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35325830

RESUMO

Dietary supplementation of green tea powder (GTP) changes egg quality of hens, however, whether these changes affect incubation is still unknown. This study was to compare the proteomic difference of incubated eggs from hens with GTP supplemented or not. Huainan partridge chickens (1,080) at 35 wk of age were allocated into 2 groups, one group fed basal diet (CG) and one group fed basal diet plus 1% GTP (EG). After 4 wk feeding, artificially fertilized eggs were collected for yolk cholesterol determination and incubation. During incubation, 6 embryos from each group were randomly selected in each day for yolk protein extraction and quantification. Yolk cholesterol content was significantly lower, while the hatchability was significantly higher in EG than that of the CG group (P < 0.05). Yolk protein concentration at embryonic days (ED) of 0, 2, 6, and 13 showed significant changes and were selected for proteomic analysis by 2-dimensional gel electrophoresis combined with liquid chromatography-tandem mass spectrometry. Fifty-one differentially expressed (DE) protein spots were identified among different incubation stages between CG and EG group which were mainly classified into vitellogenin, immunoglobulin, and ovoinhibitor, and occupied 45.1, 23.5, and 15.7%, respectively, to the total DE proteins. Ovotransferrin, participated in extracellular sequestering of iron ion process, was significantly lower in EG group than that of the CG group (P < 0.05). Ig light chain precursor (Immunoglobulin) exhibited higher expression at ED6 in EG group as compared with that of the CG group, and was participated in immune response related processes. Ovoinhibitor, mainly involved in protease binding activity, showed lower abundance at ED13 in EG group as compared with that of the CG group. Vitellogenin-3, showed lower expression in EG group as compared with that of the CG group, was mainly participated in lipid transportation and localization according to GO enrichment. Chickens fed diet with GTP provided eggs more antioxidant ability that increased hatchability, indicated that GTP could be considered as additive in breeding layer.


Assuntos
Antioxidantes , Galinhas , Ração Animal/análise , Animais , Antioxidantes/análise , Colesterol/análise , Dieta/veterinária , Proteínas do Ovo/análise , Gema de Ovo/química , Feminino , Guanosina Trifosfato/análise , Pós/análise , Proteômica , Chá , Vitelogeninas/análise
20.
J Anim Sci Technol ; 64(6): 1199-1214, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36812035

RESUMO

Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...